Lines and angles are involved in nearly every aspect of our daily lives. In construction, angles make the difference of whether a building is safe or not. Architects need to calculate angles very precisely to create a structure which stands upright and allows rainwater to run off the roof.

Builds from Year 4:
Compare and classify quadrilaterals and triangles.
Identify acute and obtuse angles.
Compare and order angles.
Identify lines of symmetry in 2-D shapes.

This year:
Draw angles.
Know the number of degrees around a point and on a straight line.
Calculate missing angles and lengths in rectangles.

Leads to Year 6:
Name parts of a circle.
Draw 2D shapes with given measurements.
Calculate missing angles in triangles and quadrilaterals.
Describe the properties of 3D shapes.

Measuring and Drawing Angles

When using a protractor to measure or draw angles, look carefully at how the numbers on the scale count from 0° to 180° in both directions.

Types of Angles

Any angle that measures less than
90° is called an acute angle.

acute

Any angle that measures greater than 90° and is less than 180° is called an obtuse angle.

Any angle that measures greater than 180° is called a reflex angle.

reflex

Angles on a Straight Line

Angles on a straight line always total $\mathbf{1 8 0}^{\mathbf{\circ}}$.

obtuse

acute
Angles on a Straight Line
Angles on a straight line always total $\mathbf{1 8 0}^{\circ}$.
63°

Angles around a Point

Angles around a point always total $\mathbf{3 6 0}^{\circ}$

Key Vocabulary

angle right angle acute obtuse reflex horizontal vertical parallel perpendicular polygon regular irregular flat/curved face edge vertex vertices radius diameter circumference apex two-dimensional three-dimensional protractor

