LONG MEADOW SCHOOL

MATHEMATICS CALCULATION POLICY

This policy has been developed to ensure progression and consistency across the school. A range of variations have been included to support the pupils in their understanding of number and calculation. This document should be used to support children to develop a deep understanding of number and calculation. It has been designed to teach children through the use of concrete, pictorial and abstract representations.

- Concrete representation - using objects to introduce a skill or idea to develop conceptual understanding.
- Pictorial representation - children can relate using concrete representations to pictorial representations, such as a diagram or picture of the problem.
- Abstract representation - problems be represented by using mathematical notation

Year 1 Addition

Objective \& Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part-part whole model	Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	$4+3=7$ Use the part-part whole diagram as shown above to move into the abstract.
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	Use pictures or a number line. Regroup or partition the smaller number using the part-part whole	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?

		model to make 10. $9+5=14$ 14 4	
Represent \& use number bonds and related subtraction facts within 20	2 more than 5 is 7.		Emphasis should be on the language. ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7. ' ' 8 is 3 more than 5.'

Year 2 Addition

Objective \＆ Strategy	Concrete	Pictorial	Abstract
Adding multiples of 10	Model using dienes and bead strings．	Use representations for base ten．	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$
Use known number facts： part－part whole	Children explore ways of making numbers within 20.	$\begin{gathered} \square=\square \\ \square+\square=20 \\ \square+\square=20 \\ \square+\square=\square \end{gathered}$	$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$
Using known facts．		Children draw representations of tens and ones．	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$

| Add two 2- |
| :--- | :--- |
| digit numbers |, | Model using Dienes, place value counters |
| :--- |
| and Numicon. |
| 1-digit |
| numbers |

Year 3 Addition

Column addition: regrouping	Make both numbers on a place value grid. Add up the units and exchange 10 ones for one 10.	Children can draw a representation of the grid to further support their understanding, carrying the ten.	Start by partitioning the numbers then move onto formal column to show the exchange. $\begin{array}{r} 40060 \quad 6 \\ +30050 \quad 8 \\ \hline 700110 \quad 14 \\ \hline \end{array}$ 466 $+358$ 824 11

Year 4-6 Addition

numbers of decimal places.			$\begin{array}{r} 42.463 \\ 8.910 \\ 11.020 \\ +\quad 9.600 \\ \hline 71.993 \\ \hline 21 \end{array}$

Year 1 Subtraction

Objective \& Strategy	Concrete	pictorial	Abstract
Taking away ones	Use physical objects (counters, cubes etc) to show how objects can be taken away.	Cross out drawn objects to show what has been taken away.	$7-4=3$ $16-9=7$
Counting back	Move objects away from the group, counting backwards.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?

	Move the beads along the bead string as you count backwards.		
Find the difference	Compare objects and amounts. Lay objects to represent bar model.	Count on using a number line to find the difference. Draw bars to find the difference between two numbers. James is 8 years old. His brother Jacob is 17 years old. Find the difference in age between them.	Hannah has 12 sweets and her sister has 5 . How many more does Hannah have than her sister?

Represent and use number bonds and related subtraction facts within 20: part-part whole model	Link to addition. Use part-part whole model to model the inverse. If 10 is the whole and 6 is one of the parts, what is the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model.
Make 10	$14-9=5$ Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5 .	$13-7=6$ Jump back 3 first, then another 4 . Use ten as the stopping point.	$16-8=8$ How many do we take off first to get to 10 ? How many left to take off?

Year 2 Subtraction

Objective \& Strategy	Concrete	pictorial	Abstract
Regroup a ten into ten ones	Use a place value chart to show how to change a ten into ten ones. Use Dienes or place value counters.	Draw representations and cross off.	$20-4=16$
Partitioning to subtract without regrouping	$34-13=21$ Use Dienes/PV counters to show how to partition the number when subtracting without regrouping.	$43-21=22$	$43-21=22$
Make ten strategy Progression should be crossing one ten, crossing more than one	Use a bead strings to model counting to next ten and the rest.		$92-74=18$

| ten, crossing the
 hundreds. | | Use a number line to count on to next ten and then the rest. |
| :--- | :--- | :--- | :--- |
| | | |

Year 3 Subtraction

Objective \& Strategy	Concrete	pictorial	Abstract
Column subtraction: no regrouping	$47-32=15$ Use Dienes, Numicon, place value counters, making the larger number first then taking away the smaller number.	$45-23=22$ Draw representations.	Start by partitioning the numbers then move onto formal column. $\begin{gathered} 67-32=35 \\ -60 \quad 7 \\ -\frac{30 \quad 2}{30} \\ \hline 35 \\ 67 \\ -\frac{32}{35} \\ \hline \end{gathered}$

Column subtraction: regrouping	Model exchange of 10 into 1s: Dienes, place value counters, Numicon.		Start by partitioning the numbers then move onto formal column to show the exchange. $\begin{array}{r} 61212 \\ 782 \\ -\quad 45 \\ \hline 187 \\ \hline \end{array}$

Year 4-6 Subtraction

 Strategy	Concrete	Pictorial	Abstract
Year 4 Subtract using formal column methods with numbers up to 4-digits	As Year 3.	As Year 3.	As Year 3.

Year 5 Subtract with at least 4digits, including money and measures	As Year 4.	As Year 4.	Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal. Use zeros for place holders.
Year 6 Subtract with increasingly large and more complex numbers and decimal values			$\begin{array}{r} 45^{\prime} 27^{\prime} 012 \\ -\quad 29628 \\ \hline 623084 \\ \hline \end{array}$ $\begin{array}{r} \mathcal{Z}^{1} 77.14 \\ 408 \cdot 5^{1} 0 \\ -\quad 37 \cdot 88 \\ \hline 370 \cdot 62 \\ \hline \end{array}$

Year 1 Multiplication

 Strategy	Concrete	Pictorial	Abstract

Doubling	Practical activities to demonstrate doubling．	Draw pictures to show how to double a number． Double 4 is 8 \square \square \square \square \square \square \square \square	Double 4 is＿＿＿
Counting in multiples of 2， 5 and 10	Count in multiples supported by concrete objects in equal groups．	Draw representations．Can include jumps on a number line．	Count in multiples of a number aloud． Write sequences with multiples of numbers． $2,4,6,8,105,10,15,20,25,30$
Repeated addition	円円円 Use various objects to add equal groups．	Draw pictures including number lines to solve problems． There are 5 marbles in one bag．How marbles are there altogether in 4 bags？	Write addition sentences to describe objects and pictures． $2+2+2+2+2=10$

Arrays	Create arrays using cubes or counters. Use objects laid out in arrays to find the answers to 2 lots 5,3 lots of 2 etc.	Draw arrays in different rotations.			$3 \times 2=6$$2 \times 5=10$
		$\begin{aligned} 2 \times 4=8 & \vdots 2 \times 4=8 \\ & \vdots \\ & \ddots \\ & 4 \times 2=8 \end{aligned}$			

Year 2 Multiplication

 Strategy	Concrete	Pictorial	Abstract
Doubling	Use dienes, place value counters.	As Year 1.	Partition a number and then double each part before recombining it back together.

| Counting in
 multiples of 2,
 $3,4,5,10$
 from 0
 (repeated
 addition) | $5+5+5+5+5+5+5+5=40$
 As Year 1, link to repeated addition. | |
| :--- | :--- | :--- | :--- |
| Multiplication | | |
| is | | |
| commutative | | |
| Create arrays as in Year 1. | | |

Year 3 Multiplication

Year 4 Multiplication

Year 5-6 Multiplication

Year 1 Division

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as sharing	I have 10 cubes; can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. 8 shared between 2 is 4 . 4 4 4	Share 9 cakes between 3 people.

Year 2 Division

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as sharing	As Year 1.	As Year 1 but children use bar modelling to show and support understanding.	$12 \div 4=3$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to support understanding.	Use a number line for grouping. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. 20 l	$30 \div 5=6$ Divide 30 into 5 groups. How many are in each group?

Year 3 Division

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters.	As Year 3 with the bar model. Use a number line to show jumps in groups. The number of jumps equals the number of groups.	How many groups of 6 in 24? $24 \div 6=4$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $15 \div 3=5,5 \times 3=15,15 \div 5=3,3 \times 5=15$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$

Division with remainders	$14 \div 3=$ Divide objects between groups and see how much is left over.	Equal jumps in a number line then see how many more you need to jump to find the remainder. $35 \div 3=11 r 1$ Draw dots and group them to divide an amount and clearly show a remainder.				Complete written divisions and show the remainder using r . Introduce the vocabulary of division: dividend, divisor, quotient, remainder.

Year 4-6 Division

 Strategy	Concrete	Pictorial	Abstract
Year 4	Consolidate Year 3. Children need to be secure in division facts (linked to multiplication facts) and their understanding of division, with and without remainders.	Consolidate Year 3.	Consolidate Year 3.

